
A P P E N D I X C

Affine Transformations

CONTENTS

C.1 The need for geometric transformations . . . . . . . . . . . . . . . . . . . . . . 335

C.2 Affine transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

C.3 Matrix representation of the linear transformations . . . . . . . . . . 338

C.4 Homogeneous coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

C.5 3D form of the affine transformations . . . . . . . . . . . . . . . . . . . . . . . . 340

C.1 THE NEED FOR GEOMETRIC TRANSFORMATIONS

One could imagine a computer graphics system that requires the user to construct ev-
erything directly into a single scene. But, one can also immediately see that this would
be an extremely limiting approach. In the real world, things come from various places
and are arranged together to create a scene. Further, many of these things are themselves
collections of smaller parts that are assembled together. We may wish to define one object
relative to another – for example we may want to place a hand at the end of an arm. Also,
it is often the case that parts of an object are similar, like the tires on a car. And, even
things that are built on scene, like a house for example, are designed elsewhere, at a scale
that is usually many times smaller than the house as it is built. Even more to the point,
we will often want to animate the objects in a scene, requiring the ability to move them
around relative to each other. For animation we will want to be able to move not only
the objects, but also the camera, as we render a sequence of images as time advances
to create an illusion of motion. We need good mechanisms within a computer graphics
system to provide the flexibility implied by all of the issues raised above.

335



336 � Foundations of Physically Based Modeling and Animation

The figure below shows an example of what we mean. On the left, a cylinder has been built
in a convenient place, and to a convenient size. Because of the requirements of a scene,
it is first scaled to be longer and thinner than its original design, rotated to a desired
orientation in space, and then moved to a desired position (i.e. translated). The set of
operations providing for all such transformations, are known as the affine transforms. The
affines include translations and all linear transformations, like scale, rotate, and shear.

Original cylinder
model

Transformed cylinder. It has
been scaled, rotated, and translated

O O

C.2 AFFINE TRANSFORMATIONS

Let us first examine the affine transforms in 2D space, where it is easy to illustrate them
with diagrams, then later we will look at the affines in 3D.

Consider a point x = (x, y). Affine transformations of x are all transforms that can be
written

x′ =

[
ax + by + c
dx + ey + f

]
,

where a through f are scalars.

x c

f

x´For example, if a, e = 1, and b, d = 0, then we have a pure
translation

x′ =

[
x + c
y + f

]
.

x

o
ax

x

y

ey

x´If b, d = 0 and c, f = 0 then we have a pure scale.

x′ =

[
ax
ey

]



Affine Transformations � 337

x 

o 

x´ And, if a, e = cosθ, b = − sinθ, d = sinθ, and c, f = 0, then we
have a pure rotation about the origin

x′ =

[
x cosθ − y sinθ
x sinθ + y cosθ

]
.

x

o

by
dx

x

y

x´Finally if a, e = 1, and c, f = 0 we have the shear transforms

x′ =

[
x + by
y + dx

]
.

In summary, we have the four basic affine transformations shown in the figure below:

• Translate moves a set of points a fixed distance in x and y,

• Scale scales a set of points up or down in the x and y directions,

• Rotate rotates a set of points about the origin,

• Shear offsets a set of points a distance proportional to their x and y coordinates.

Note that only shear and scale change the shape determined by a set of points.

Translate
Scale

ShearRotate



338 � Foundations of Physically Based Modeling and Animation

C.3 MATRIX REPRESENTATION OF THE LINEAR TRANS-
FORMATIONS

The affine transforms scale, rotate and shear are actually linear transforms and can be
represented by a matrix multiplication of a point represented as a vector,[

x′

y′

]
=

[
ax + by
dx + ey

]
=

[
a b
d e

] [
x
y

]
,

or x′ = Mx, where M is the matrix.

One very nice feature of the matrix representation is that we can use it to factor a complex
transform into a set of simpler transforms. For example, suppose we want to scale an
object up to a new size, shear the object to a new shape, and finally rotate the object. Let
S be the scale matrix, H be the shear matrix and R be the rotation matrix. Then

x′ = R(H(Sx))

defines a sequence of three transforms: 1st-scale, 2nd-shear, 3rd-rotate. Because ma-
trix multiplication is associative, we can remove the parentheses and multiply the three
matrices together, giving a new matrix M = RHS. Now we can rewrite our transform

x′ = (RHS)x = Mx

If we have to transform thousands of points on a complex model, it is clearly easier to
do one matrix multiplication, rather than three, each time we want to transform a point.
Thus, matrices are a very powerful way to encapsulate a complex transform and to store
it in a compact and convenient form.

In matrix form, we can catalog the linear transforms as

Scale:
[
sx 0
0 sy

]
, Rotate:

[
cosθ − sinθ
sinθ cosθ

]
, Shear:

[
1 hx

hy 1

]
,

where sx and sy scale the x and y coordinates of a point, θ is an angle of counterclockwise
rotation around the origin, hx is a horizontal shear factor, and hy is a vertical shear factor.

C.4 HOMOGENEOUS COORDINATES

Since the matrix form is so handy for building up complex transforms from simpler ones,
it would be very useful to be able to represent all of the affine transforms by matrices.
The problem is that translation is not a linear transform. The way out of this dilemma is
to turn the 2D problem into a 3D problem, but in homogeneous coordinates.

We first take all of our points x = (x, y), express them as 2D vectors
[
x
y

]
and make these



Affine Transformations � 339

into 3D vectors with identical (thus the term homogeneous) 3rd coordinates set to 1:[
x
y

]
=⇒

xy
1

 .
By convention, we call this third coordinate the w coordinate, to distinguish it from the
usual 3D z coordinate. We also extend our 2D matrices to 3D homogeneous form by
appending an extra row and column, giving

Scale:

sx 0 0
0 sy 0
0 0 1

 ,Rotate:

cosθ − sinθ 0
sinθ cosθ 0

0 0 1

 , Shear:

 1 hx 0
hy 1 0
0 0 1

 .
Note what happens when we multiply our 3D homogeneous matrices by 3D homoge-
neous vectors: a b 0

d e 0
0 0 1


xy
1

 =

ax + by
dx + ey

1

 .

x 

y w 
plane w=1 

p
1 

p
0 

p
3 

p
2 This is the same result as in 2D, with the excep-

tion of the extra w coordinate, which remains 1.
All we have really done is to place all of our 2D
points on the plane w = 1 in 3D space, and now
we do all the operations on this plane. Really, the
operations are still 2D operations.

But, the magic happens when we place the translation parameters c and f in the matrix
in the 3rd column: a b c

d e f
0 0 1


xy
1

 =

ax + by + c
dx + ey + f

1


We can now do translations as linear operations in homogeneous coordinates! So, we can
add a final matrix to our catalog:

Translate:

1 0 4x
0 1 4y
0 0 1

 ,
where4x is the translation in the x direction and4y is the translation in the y direction. The
astute reader will see the trick behind the magic – 2D translation is now being expressed
as a shear in 3D space.



340 � Foundations of Physically Based Modeling and Animation

x

y

x

y

x

y

(-1,-1)

(-1,1)

(1,-1)

(3,2)

(0,-  2 )

(1,1)

(3+  2, 2 )

(3-  2, 2 )

(3,2+  2 )

(3,2-  2 )

(0,  2 )

(  2 ,0)(-  2 ,0)

1

2

rotate 45o

translate (3, 2)

Now, suppose we have a 2 × 2 square
centered at the origin and we want to
first rotate the square by 45◦ about its
center and then move the square so its
center is at (3, 2). We can do this in two
steps, as shown in the diagram to the
right.

In matrix form:

M = T(3,2)R45◦ =

1 0 3
0 1 2
0 0 1


cos 45◦ − sin 45◦ 0
sin 45◦ cos 45◦ 0

0 0 1


=

cos 45◦ − sin 45◦ 3
sin 45◦ cos 45◦ 2

0 0 1


=


√

2/2 −
√

2/2 3
√

2/2
√

2/2 2
0 0 1

 .
Note that

M

11
1

 =


3

2 +
√

2
1

 , and M

−1
1
1

 =

3 −
√

2
2
1

 ,
verifying that we get the same result
shown in the figure.

C.5 3D FORM OF THE AFFINE TRANSFORMATIONS

Now, we can extend all of these ideas to 3D in the following way:

1. Convert all 3D points to homogeneous coordinates

xy
z

 =⇒


x
y
z
1

 .
The extra (4th) coordinate is again called the w coordinate.



Affine Transformations � 341

2. Use matrices to represent the 3D affine transforms in homogeneous form.

The following matrices constitute the basic affine transforms in 3D, expressed in homo-
geneous form:

Translate:


1 0 0 4x
0 1 0 4y
0 0 1 4z
0 0 0 1

 , Scale:


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 ,
and

Shear:


1 hxy hxz 0

hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1

 .
In addition, there are three basic rotations in 3D,

Rotation about the x axis:


1 0 0 0
0 cosθx − sinθx 0
0 sinθx cosθx 0
0 0 0 1

 ,

Rotation about the y axis:


cosθy 0 sinθy 0

0 1 0 0
− sinθy 0 cosθy 0

0 0 0 1

 ,
and

Rotation about the z axis:


cosθz − sinθz 0 0
sinθz cosθz 0 0

0 0 1 0
0 0 0 1

 .
The rotations, specified in this way, determine an amount of rotation about each of the
individual axes of the coordinate system. The angles θx, θy, and θz of rotation about the
three axes are called the Euler angles. They can be used to describe an off-axis rotation, by
combining Euler angle rotations via matrix multiplication. Note, however, that the order of
rotation affects the end result, so besides specifying Euler angles, an order of rotation must
be specified. In general, affine transformations are associative but are not commutative,
so the order in which operations are done is highly important. One can see this for
rotations by computing the product Rθx Rθy Rθz , and comparing with the result obtained
by the product Rθz Rθy Rθx . Please see Appendix D for a more powerful and general look
at rotation.


